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A new base pair (called K-n) of Watson-Crick type, with an H-bond pattern different from that in A-T and 
G-C base pairs, has been recently synthesized by Benner and coworkers and shown to be stable and incorporable 
into duplex DNA and RNA by polymerases. This new base pair, which contains three H-bonds, is compared with 
G-C, in the framework of modern dynamical theory of quantum nonlocality and quantum correlations (also called 
Einstein-PodolskL.-Rosen correlations). Connection with the traditional treatment of proton transfer in DNA base 
pairs, which uses the adiabatic approximation (thus considering the protons as classical particles), is explicitly 
made. As a result, the dynamics of the H-bond pattern of G-C is shown to exhibit a specific quantum-mechanical 
phase stability (or: rigidity, stiffness), which is clearly missing in the case of K-n. This finding is discussed and 
illustrated, also in connection with recent quantum chemical calculations of proton transfers in DNA base pairs. 
Additionally, certain speculations concerning a probable ‘evolutionary advantage’ of G-C with respect to K - Z  are 
shortly considered. 

1. Introduction. - It is well-known that H-bond is of prime importance for structure 
and functioning of biological systems. E.g., the discovery of the structure of DNA [l] 
made also clear that life without H-bond were impossible, since H-bonds between base 
pairs hold the two strands of DNA together. Very recently, Benner and coworkers [2] 
extended the genetic alphabet with a new base pair of Watson-Crick type, called K - Z .  They 
also showed that this base pair is stable and can be enzymatically incorporated into 
duplex DNA and RNA [2]. This novel work motivated the present quantum dynamical 
analysis of protonic quantum correlations in the H-bonds of the base pairs, in connection 
with our current investigations concerning quantum correlations and dynamics of proton 
transfer in H,O [3-51. 

An important role in the present work play also Lowdin’s quantum chemical calcula- 
tions of the potential energy surfaces (or curves) of the protons by their movement along 
the H-bond directions in DNA base pairs [6] [7]. These calculations indicate the existence 
of a double-well potential energy profile related with the considered protonic motions, 
which also means that the protonic quantum states participating to H-bonds of DNA 
have finite lifetimes. The possible biological significance of this fact with respect to 
mutagenesis has been extensively discussed [6] [7]. 
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Since the discovery of Bell’s inequalities (see [gal for an introduction) and, in particu- 
lar, during the last decade it has been recognized that modern quantum theory accounts 
for striking delocalization effects which have no classical analogue. In other terms, one 
speaks of quantum or Einstein-Podolsky-Rosen (EPR) correlations [%lo]. (For readers 
being interested in a mathematical definition of EPR correlations, we recommend the 
presentation of Primas in [lo], pp. 136-146.) Their existence - and the corresponding 
violation of Bell’s inequalities -has been verified through a large number of experiments 
(see references cited [%lo]). Two very recent (and really impressive) experiments demon- 
strate, for the first time, quantum delocalization of whole atoms, namely He [ 1 la] and Na 
[ 1 1 b], over distances of the order of 1 pm. Thus, also atomic nuclei appear to be quantum 
objects, which furthermore implies that the nuclear coordinates - in the physical context 
of time-dependent processes - have to be treated as dynamical variables rather than 
parameters (i.e. classical quantities). Apparently, these [ 111 (and other [3-51) quantum 
delocalization effects are in ‘conceptual conflict’ with the classical treatment of the 
nuclear degrees of freedom in the framework of standard quantum chemical calculations. 

The importance of EPR correlations for the dynamics of ‘heavy’ particles (like 
protons, deuterons, alkali atoms, etc. ) in condensed matter was recently recognized [5] 
and demonstrated through novel predictions of the theory to five different experimental 
topics (cf. [3-51). 

The present paper applies for the first time the modern theory of quantum correla- 
tions to the dynamics of protons participating to H-bonds in DNA base pairs. These 
correlations are due to the quantum, nonlocal character of the protons of base pair 
H-bonds. In particular, we are dealing with the ‘stabilities’ of the G-C and K-TC base pairs. 
Both pairs have three H-bonds. Moreover, melting experiments of oligomers containing 
these base pairs showed that they have comparable stability, in the standard thermo- 
dynamic sense [2]. Our investigations, however, show that the H-bond pattern of G-C has 
a specific quanta1 stability (being due to quantum correlations between the protonic 
motions of its H-bonds), which is clearly missing in the K-TC base pair. This is shown to 
imply a specific kind of ‘ phase stability’, or ‘quantum rigidity’ for G-C, which could also be 
considered to be associated with an ‘evolutionary advantage’ of G-C with respect to K-TC.  

The present paper is organized as follows: Sect.2 and 3 deal with Benner’s and 
Lowdin’s investigations. Sect. 4 and 5 present the quantum mechanical prerequisites and 
our main theoretical result. Sect. 6 is mainly of ‘technical’ character and contains the 
proof of the main theoretical result. Sect. 7 deals with the concrete application of the 
theoretical results to the cases of G-C and K-TC ; here, an increased quantum mechanical 
‘phase rigidity’ or ‘stiffness’ of the former with respect to the latter base pair is revealed. 
At last, Sect.8 contains some speculations related to the biological significance of the 
natural and new base pairs, in the light of the present quantum dynamical theory. Some 
mathematical details of Jordan blocks are presented in the Appendix. 

2. On Benneu’s Extension of the Genetic Alphabet. ~ The geometry of a Watson- 
Crick-type base pair can accomodate several mutually exclusive hydrogen bonding 
schemes (for some examples, see Fig. I ) .  Each of them is defined by the distribution of 
H-bonds (proton-donor or -acceptor) on the purine and pyrimidine rings. Nature, how- 
ever, uses only two of these schemes (the well known G-C and A-T) and, in particular, one 
‘incompletely’, as adenine (instead of diaminopurine) is used as the complement for uracil 
or thymine in natural nucleic acids. 
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Fig. 1. The basepairs G-C, T-A, ti-x, und the base z, diich forms with K the base pair ti-z. (The arrows indicate the 
bonds of the bases with the sugar-phosphate backbones of the DNA double helix.) K-z has the same H-bond 
pattern with K - X ,  which differs from that of G-C. Below the structural formulas are shown LGwdin's schematic 
representations of the corresponding H-bond patterns. Compare the more 'symmetric' H-bond pattern of K-z (or 

t i-x) to that of G-C (for details, see the text). 

Very recently, a novel Watson-Crick-type base pair (called K-z, see Fig. I )  exhibiting a 
different H-bond pattern from that in A-T and G-C base pairs, was designed and 
synthesized [2] [ 121. Furthermore, this base pair was successfully incorporated into duplex 
DNA and RNA by adequate polymerases. Additional melting experiments with several 
oligonucleotides showed that duplexes containing a K-n base pair are only slightly less 
stable than duplexes containing only A-T and G-C. Moreover, duplexes containing the 
new base pair appear to be considerably more stable than those containing mismatches 
involving the new bases, which in turn have melting temperatures similar to duplexes 
containing mismatches of natural bases [2]. 

Thus, this pioneering biochemical work demonstrated the feasibility of expanding the 
genetic alphabet by increasing the number of letters that enzymatically can be incorpo- 
rated into nucleotides by template-directed polymerization. Among other consequences, 
also the possibility of synthesizing new RNA molecules with the potential for greatly 
increased catalytic power (even RNA that may catalyse its own replication) has been 
pointed out [2]. 
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3. Proton Tunneling in DNA Base Pairs and Its Biological Significance. ~ Since the 
discovery of the structure of DNA, it has been conjectured that tautomeric forms of the 
bases A, C, G, and T might cause ‘errors’ by DNA replication and associated processes. 
For instance, as Watson and Crick already 1953 wrote: ‘Our model suggests possible 
explanations for a number of other phenomena. For example, spontaneous mutation 
may be due to a base occasionally occurring in one of its less likely tautomeric forms.’ 
(See [l], p. 966.) 

Tautomeric forms of DNA bases are crucial for Lowdin’s ‘double proton transfer’ 
model of mutagenesis, which has been studied for many years [6] [7]. A (coupled) double 
proton transfer in a A-T of G-C base pair corresponds to the following: if one proton of 
the two H-bonds in A-T or the three H-bonds in G-C moves from its equilibrium position 
near its N-atom, along the line of the H-bond (see the broken lines in Fig. I ) ,  to the lone 
electron pair of its ‘opposite’ 0-atom, then this is likely to induce the reversal motion of a 
second proton in another H-bond of the same base pair, the later being in order to 
maintain the gross electric neutrality of the base pair [6]. In G-C, of course, there are two 
H-atoms ‘belonging’ to G, which, together with the H-atom of C, may undergo the 
coupled proton transfer under consideration. In this case, therefore, two different double- 
well potentials for the considered double proton transfer were calculated (see below). 

First calculations on this topic (on the MO-LCAO-SCF level [6]) showed that the 
specific double proton transfer in DNA base paires indicated above may lead to double- 
well potential energy profiles (in short: potentials) for the two protons involved. The 
derived potentials support the formation of some short-lived tautomeric forms of the 
bases. As Lowdin pointed out, the protons are not classical particles but ‘wave packets’ 
obeying the laws of quantum theory, and thus they may be subject to the well-known 
tunnel effect in the double-well potentials mentioned above. This effect implies that the 
genetic code cannot be 100% stable, which furthermore means that this proton transfer 
over a distance of ca. 1 A may be one of the driving forces in the evolution of living 
organisms on the earth [6]. 

In this context, it should be mentioned that Clementi et al. carried out an ab initio SCF 
calculation for the (possible) tunneling of one proton in the G-C base pair. They found 
that a single proton transfer (which formed an ion pair) gave a single-well energy profile 
characterized by a monotonically increasing energy function [ 131. 

More recent calculations (on the ab initio SCF level) on the coupled double proton 
transfer in DNA base pairs, however, do support the existence of the aforementioned 
double-well potentials [7]. It is also interesting to note that these recent calculations 
exhibit far more asymmetric double-well potentials than the previously reported work [6]. 
This means that the structure of the base pairs in DNA appears to be more stable than 
previously believed. As a consequence, the experimentally determined spontaneous mu- 
tation rates in DNA, as cited in [6], cannot be explained any more in a quantitative way, 
with the aid of the numerical results of reference [7]. 

Nevertheless, the above results support qualitatively Lowdin’s hypothesis that certain 
tautomeric forms of the bases may result from double proton tunneling in the Watson- 
Crick base paires in DNA double helix. Additionally, the results of Kong et al. [7] indicate 
that the possibility of error in the genetic code replication in G-C base pair occurs more 
easily than that in A-T base pair, because the barrier hight of the double proton transfers 
in G-C base pair (48.85 and 64.02 kcal/mol) is lower than that in A-T base pair (70.24 
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kcal/mol). In other words, the equilibrium concentrations of the tautomers is expected to 
be greater in the case of G-C than in the case of A-T. It has been speculated that this 
observation might offer a possible explanation for the larger A-T to G-C content in 
higher organisms [6]. For another speculation about this point, see Sect. 8. 

4. Couplings in Proton-Transfer Dynamics of G-C and K-A. - Schematic representa- 
tions of base pairs (like those shown in Fig. I ) ,  DNA fragments, proteins, molecular 
water clusters, etc. overemphasize a static (or ‘frozen’) point of view for these molecular 
systems, and in a sense one can speak of the ‘crystallographer’s viewpoint’. In realistic 
situations (like DNA in living organisms at room temperature), however, the geometric 
form of these systems fluctuates with time, due to i )  the well-known thermal motion and 
i i)  the relative weakness of the H-bond (ca. 3 kcal/mol). This is one crucial reason 
stressing the fact that the standard quantum chemical calculations (as those mentioned 
above) are often of crude approximative character. In general, as a matter of fact, even 
the most modern quantum chemical computer calculations of molecular systems consider 
the nuclei - and even the protons - as classical mass points and treat only the electrons - 
and in most cases only some of them ~ quantum mechanically. In the scientific literature, 
one finds a huge number of different calculatory approaches, called approximations, 
methods, or techniques; CJ [14-201. 

The most popular of these methods has been the adiabatic (Born-Oppenheimer) 
approximation, with its various specific forms. However, in the context of time-depen- 
dent, i.e. dynamical processes (like a chemical reaction or fluctuations in the H-bonding 
pattern of DNA), this approximation has been recently shown to be unphysical and 
sometimes even to yield incorrect results [20]. Thus, in these cases, it must be replaced by 
the so-called diabatic representation (or by a more suitable one). For a pedagogical 
overview, which also contains some experimental examples, see the excellent review 
article by O’Mulley [20]. 

In the following, let us consider (some aspects of) the dynamics of the aforementioned 
coupled double proton transfer in G-C, and -in principle - also in K-z. In the light of the 
diabatic representation, one can write the effective second-order Humiltonian matrix 
(using standard notation for the matrix elements) as 

cf [20]. As an example, the diagonal matrix elements H I ,  and H2* (where H,, = T,, + V,,, in 
standard notation) will be considered to represent the matrix elements of the Hamiltoni- 
ans of the aforementioned two double proton transfer in G-C (and K-z) ,  and the dynami- 
cal variables R, represent the corresponding positions of two protons, as described in 
Sect. 3. Of particular importance, however, is here the nondiagonal element V(R,,R,) 
which represents the quantum mechanical coupling between the two protonic dynamical 
processes being described by H , , ( R I )  and H2*(R2). 

It is now important to realize that, due to physical reasons, the coupling V(R,,R,) 
cannot vanish for all positions of the moving protons. This can be shown at least in the 
following two ways. i )  An illustrative way (using the language of quantum chemistry) is 
given by noting that every proton drags with it a significant electron cloud, as it moves 
from one end of the H-bond to the other. In the coupled motion of two protons, as 
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considered above, the repulsion between these clouds, as the protons pass each other, 
results in a interaction (coupling) between them. i i )  A more subtle reason for this 
coupling is given by the fact that protons are also quantum objects, thus exhibiting an 
intrinsic delocalization which has to be of the order of the de Broglie wavelengths I,,, of a 
proton. A short calculation of A, of a (quasi-free) proton with kinetic energy being equal 
to the thermal energy k,T (kB: Boltzmann constant) gives at room temperature A, zz 1.5 
A. This numerical estimate of the protonic delocalization (which could appear to some 
readers to be surprisingly large) implies that the wave functions of the delocalized protons 
partially overlap so that they can interfere, thus creating intrinsic quantum correlations 
between them. 

5. Quantum Correlations in G-C and Its Increased Stability. - It is well-known that 
the G-C base pair in DNA, having three H-bonds, is more stable against breaking than 
A-T, which has only two of them. In a crude approximation, one has to expect that the 
stability of the K-z (or K - X )  base pair, which exhibits three H-bonds, may be comparable 
with the stability of G-C. Indeed, the corresponding melting experiments in oligomers [2] 
mentioned in Sect. 2 support this expectation. 

Omiting here mathematical technicalities (which will be given in the next section) let 
us present the following surprising finding of our quantum dynamical investigations: 

The base pair G-C is expected to exhibit a higher specific quanta1 stability than the 
IC-n, this being due to specific time-dependent quantum correlations between the 
protons during their motions (around their equilibrium positions). 

Some explanations and illustrative remarks may now be helpful: 1 )  The term ‘more 
stable state’ is usually considered to mean nothing other than ‘state with lower (free) 
energy’. This is trivially true in classical mechanics and thermodynamics. But in quantum 
mechanics, where the phase relations between identical particles must be taken into 
account, the above two terms do not have always the same meaning. (In this context, one 
usually refers to the case of superconductivity, as an example, where the perfect phase 
‘matching’ (or coherence) of the quantum states of the individual electron pairs causes a 
dramatic increase in the stability of the electric supercurrent against thermal distur- 
bances.) 2)  The quantum (or EPR) correlations mentioned above are intrinsically con- 
nected with the phase coherence of quantum systems. This coherence is well-known to 
cause a specific ‘rigidity’ or ‘stiffness’ of the corresponding quantum state. As a conse- 
quence, it costs energy to change the phase of this quantum state in space or time - thus 
making the system more ‘stable’, say, against thermal disturbance through its environ- 
ment. It should be emphasized that EPR correlations have no classical analogue, and thus 
they cannot be illustrated through some example refering to ‘common sense’ [S] 191. 
3 )  With the aid of quantum mechanics (of dynamical processes), it can be shown that, in 
the case of G-C, an increased phase stability concerning the two coupled proton transfers 
(see Sect. 3) may appear, and that this is not probable for K-71. We can namely prove that 
- under specific conditions, see Sect.6 below - the effective 2 x 2 Hamiltonian matrix, 
Eqn. I ,  for G-C does not have two eigenstates (as one usually expects), but only one; CJ 

also the Appendix. This restriction of the space of states functions corresponds to - or 
represents - the aforementioned increased phase rigidity or stiffness. 4 )  This fact can be 
verbally described by saying that the protons in G-C move ‘cooperatively’ or ‘coherently’, 
or that their motions are ‘EPR-correlated’, or that the protonic system became ‘more 
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rigid’, etc. As a consequence, it is now more difficult to disturb the motion of one of the 
protons, since any applied disturbance acts ‘at the same time’ on all protons (H-atoms), 
due to the quantum (or EPR) correlations ‘connecting’ them. Apparently, this corre- 
sponds to an effective ‘weakening’ of the disturbance, as concerns its action on one 
specific proton, and equivalently to an increased ‘stability’ of the H-bonds against 
disturbances. (Remember, however, that quantum correlations do not have any classical 
analogue.) 5 )  Due to the facts that, in real systems, i )  DNA is not in gas phase but is 
surrounded by H,O, ions, proteins etc., and ii) the temperature of interest is finite, one 
recognizes that the thermal motion may affect the coupling operator V(R,,R,), which 
then - at least in certain cases - should be assumed to be time-dependent. 

6. Theoretical Details and Proof. - This topic, which is mainly of technical character, 
considers the proof of the quantum theoretical result discussed in Sect. 5. Therefore, 
readers with less interest in quantum mechanics of dynamical processes may skip it and 
proceed to the next Sect. 7 .  

Almost 30 years ago, it was recognized that the well-known adiabatic approximation 
(and its standard variations) of the Schrodinger equation cannot describe correctly many 
dynamical processes even in small atomic and molecular systems; CJ [20]. (For con- 
densed-matter dynamics the adiabatic approximation is irrelevant.) Some simple exam- 
ples of such processes are: atomic and molecular inelastic collisions, elementary chemical 
reactions, charge and/or energy transfer between atoms and/or molecules. 

The conventional adiabatic approximation has been meanwhile considerably im- 
proved and/or replaced by: a )  its extension to complex adiabatic parameters and complex 
energy surfaces, cJ [ 141 [ 151 [ 171; b )  the different diabatic approximations, cf [ 18-20]; 
c )  the method of optical potentials, cJ [21]; etc. The most powerful and well-founded 
approach, however, which at the same time ‘unifies’ the aforementioned improvements 
and clarifies their limitations, seems to be the recently discovered ‘theory of dilation 
analytic operators’, also called Complex Scaling Method (CSM): cc [22] for a recent 
overview and an extended list of references, and [23] for a pedagogical introduction. 

These improvements establish also a crucial extension of the well-known basic quan- 
tum mechanical formalism: The Hamiltoniun matrices become non-Hermitian, and espe- 
cially complex symmetric [22] [23]; cJ also [24]. Thus the matrix elements H I , ,  HZ2 and Vof 
H in Eqn.1 are in general complex quantities, which also implies that the effective 
Hamiltonian H ( R )  is non-Hermitian. An important consequence is that now H may have 
complex eigenvalues, which also implies that the corresponding eigenstates are non- 
stationary. 

In the present context, it should also be mentioned that already 1927 Dirac had 
pointed out the necessity of using non-Hermitian Hamiltoniuns for the treatment of 
decaying states, cJ [25]. Similarly, in Prigogine’s novel theory of microscopic irreversibil- 
ity, cJ [26], the aforementioned hermiticity and, moreover, the unitarity of the evolution 
operator, are lost. 

Having in mind certain general results of the CSM [22] [23], let us now assume the 
effective Hamiltonian matrix H(R,,R,), Eqn. I ,  to be complex symmetric. Then we can 
prove the following theorem [ 171 : 

The 2 x 2 matrix H(R,,R,) has in general two complex eigenvalues and two linearly 
independent complex eigenvectors. Under a specific condition (Eqn. 3, below), how- 
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ever, H becomes non-diagonalizable (i.e. it becomes a Jordan block of order 2), and it 
has only one eigenvector. 

We now proceed to the proof of the theorem. As is well-known, the eigenvalues E+ 
and E- following from the time-independent Schrodinger equation H Y *  = E,Y* are 
given by 

(compare e.g. [14] [15] or any textbook of quantum chemistry). Here and in the following, 
the arguments Ri are often omitted for simplicity. These two quantities ‘cross’ another 
(or: intersect) for R values making the square root expression equal to zero, i.e. 

HI, = H22 f i 2V, (3) 
which then also implies that E+ = E-. (Parenthetically, it should also be noted that the 
condition E+ = E- is the starting point of different discussions of the so-called ‘non-cross- 
ing rule’ of the adiabatic approximation; e.g. CJ [14-171 [20].) 

As mentioned in Sect. 3, we are interested in cases where Vdoes not vanish identically 
(i.e. for all values of RJ.  For these cases, it has been proved [I71 that the Hamiltonian 
matrix H ,  under the Condition 3,  exhibits a Jordan block structure [27], i.e. it is similar to 
the matrix 

This means that no similarity (nonsingular) transformation is able to diagonalize H. 
Furthermore, H has only one eigenvector [27], which in the present case has the explicit 
form [ 171. 

Y,=( 2v ) 
H*z-H,, 

For more details, see the Appendix. Of course, for Hermitian matrices this never can 
happen. 

7. Consequences for the G-C and K-n Phase Stability. - In this section, the previous 
formal results and discussions are explicitly applied to the dynamics of the coupled 
double proton transfers (see Sect.3) in these base pairs. As discussed in Sect.4, the 
diagonal elements H i ,  and HZ2 may be assumed to describe the two possible double proton 
transfers under consideration, and Vmay represent the quantum mechanical coupling (or 
‘interaction’) between them. Furthermore, and to simplify the following remarks, let us 
restrict our considerations to the ‘equidistant’ (or ‘cooperatively coupled’) double proton 
transfers being defined by the requirement: 

R,  = R,-R. 

By considering the pattern of the H-bonds in the base pairs (see Fig. I ) ,  the following 
point may be observed: The triple H-bond pattern in IC-z (and IC-x) exhibits a specijiic 
symmetry that is missing in G-C. This is easily seen with the aid of Lowdin’s schematic 
representations of the H-bond patterns as shown in Fig. I .  Namely, the H-atom of the 
base contributing only one H-atom in the H-bond pattern ( i x . ,  z or x) is situated in the 
‘central’ position, and the other two H-atoms ‘belonging’ to IC are situated symmetrically 
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in the two ‘outer’ positions of the pattern. This symmetric distribution of the H-bonds of 
K-z is clearly not present in the G-C base pair. 

This observation, however, appears to be crucial for the quantum dynamics of the 
protonic motions in the considered base pairs. Namely, the aforementioned ‘symmetry’ in 
K-z also implies that the two double proton transfers (as discussed in Sect. 3 )  are expected 
to have similar potential energy curves V,,, for a significant part of the numercial range of 
R. Thus, we can assume in first approximation that 

H , , ( R )  = H22(R) for K-z  (6) 

Remember that in the presently considered case of a complex symmetric effective Humil- 
toniun, the quantities H I ,  and Hz2 may be complex. 

The same considerations suggest also that the corresponding ‘asymmetry’ of the 
H-bond pattern of G-C gives rise to the inequality (for a significant part of the range of R )  

H , , (R)  # H2,(R) for G-C (7)  

This result is in line with the different numerical values of the two potential barriers 
mentioned in Sect.3, where only the real parts of (the generally complex quantities) 
H , , ( R )  and Hzz(R)  were considered. 

Some further reasoning leads now straightforward to the envisaged result. i )  K-z : 
Equality 6 and the Condition 3 can be fulfilled simultaneously in the trivial case V = 0 
only, which also makes the Hamiltoniun H diagonal. But the latter point also implies that 
the two quantities H I ,  and H22 are uncoupled, in the approximation under consideration. 
Thus, we may conclude that there do not exist quantum correlations and phase stability 
of the aforementioned character between the two double proton transfers in K-Z. ii) G-C: 
Znequality 7 and the necessary Condition 3 for the occurrence of Jordan blocks in the 
Hamiltoniun H can be fulfilled simultaneously, for some value(s) of R, with nonvanishing 
coupling V. Thus, the quantum correlations between the two double proton transfers and 
the aforementioned increased phase stability (see Sect. 5 above) may become effective in 
the G-C base pair. 

To illustrate furthermore these findings, let us continue these investigations concern- 
ing the G-C base pair by taking into account the calculated forms of the potential energy 
curves of Kong et al. [7]. To be specific, let us consider, in particular, the following special 
case of the C-G dynamics, Eqn. 7 : 

H, , (R)  and H,,(R): real 

V(R ,R) - iF(R)  with real / ( R )  

Due to the considered validity of the restriction R ,  = R2-R, see above, we also may 
assume for the kinetic energies T I ,  = T2,. The Condition 3 for the appearance of a Jordan 
block, for some ‘position(s)’ R,, in the effective Hamiltoniun matrix (by choosing the 
minus sign in it) reads now: 

VI,(RJ = V2,(R,) + 2 m )  (10) 

Let now V22(R) represent the potential energy of the coupled transfer of the C-hydro- 
gen with the ‘central’ G-hydrogen of the H-bond pattern; V l l ( R )  then represents the 
corresponding potential energy of the transfer of the two ‘outer’ protons in this bonding, 
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Fig. 2. Schematic representation of the double-well potentials of the coupled double proton transfers in the C-G 
base pair [7]  and their difference. The ‘reaction’ coordinate R for the double proton transfers under consideration is 
given in units of 0.1 A. V22(R) represents the considered potential energy of the coupled transfer of the single 
C-hydrogen with the ‘central’ G-hydrogen of the H-bond pattern; Vl , ( R )  represents the corresponding potential 
energy of the transfer of the two ‘outer’ protons in this bonding, cf  Fig. I. Note the remarkable approximative 
linearity of the difference V,,(R)-V,,(R) with respect to the ‘reaction’ coordinate R, for a large part of R values. 
The physical meaning of this observation is a specific ‘enhanced’ phase stability (or rigidity) of the considered 

system (paper in preparation). 

cJ Fig. 1.  For this special choice, the recent results of Kong et al. [7] for the double-well 
potentials of these transfer processes are represented schematically in Fig. 2, together with 
their difference. These data reveal the following surprising feature: as one sees in Fig. 2, 
the function Vll(R) - V,,(R) is almost (but not exactly) linear in the ‘reaction’ coordinate 
R. This is by no means trivial, since this quasi-linearity holds for (almost) all R values 
between the two potential-energy minima. (This linear relationship is subject of current 
investigations.) 

Since the coupling V may fluctuate in the course of time (e.g. due to thermal distur- 
bances), the possible value(s) of R, may ‘fluctuate’, too. 

By taking into account the specific form of the single eigenvector !FAR<), Eqn. 5,  in the 
case of a Jordan- block Hamiltonian, we immediately conclude the following: the direction 
of !FARc) is almost independent of the specific value of R,, i.e. 

In other words, it follows that all the possible Jordan-block eigenvectors Y,(R,) are 
related to (approximately) the same physical state, despite of the fact that the effective 
Hamiltonian, Eqn. I ,  is strongly R-dependent - an unexpected result indeed. Thus, this 
striking finding physically means that the considered quantum mechanical phase stability 

80 



2262 HELVETI~A CHIMICA ACTA - Vol. 75 (1992) 

(or rigidity) of the C-G system is higher than the previous general derivations may have 
indicated. 

At this stage, it is instructive to mention a possible ‘constructive role’ that thermal 
motion (or: disturbance) may play by the stabilisation of the DNA base pairs. This 
remark is certainly not expected, since usually one assumes that the thermal motion 
disturbs (or even destroys) quantum effects. However, the situation is here more subtle. 
Due to the thermal motion, namely, the distance between individual bases in base pairs 
does fluctuate in time; cf Sect. 5, point 5. This implies a time dependence in the functional 
form and the strength of the quantities H,, (R) ,  H,*(R) and V(R,R).  Therefore, Condition 
3, being necessary for the occurrence of the specific quantum ‘cooperativity’ under 
consideration, can now be fulfilled easier, during many time instants (or short time 
intervals), as time goes on. This qualitative consideration also illustrates the aforemen- 
tioned dynamical character of the effect being revealed by the theory, and it is conceptu- 
ally in line with the novel work of Prigogine and coworkers concerning the ‘constructive 
role’ of irreversibility in self-organisation processes; cf [26]. 

8. Some Speculations on the Biological Role of Phase Rigidity. ~ The extension of the 
genetic alphabet through the novel experimental work of Benner and coworkers [2] 
appears to be of ‘practical’ importance for biochemistry of living organisms, and at the 
same time, it stimulates further investigations concerning the prebiotic evolution of 
biological macromolecules (cf. [28-321) and, more generally, the self-organisation of 
living matter. Here let us shortly consider some related speculative points. 

As mentioned above, G-C and ~ - n  have similar thermodynamic stability as well as 
stability against the spontaneous occurrence of tautomeric forms of the bases involved; 
c f  in particular [12]. Thus the question arises, why Nature has not incorporated the new 
base pair in DNA or RNA. In this context, Benner notices that the C-C bond between 
base and sugar is more difficult to synthesize than the corresponding N-C bond appear- 
ing in the natural nucleosides [12]. Furthermore, our present investigations reveal that the 
G-C base pair exhibits an additional ‘quantum-correlation stability’ of its triple H-bond- 
ing pattern, which is clearly missing in the K-x (or K - x )  base pair. From this specific point 
of view, G-C might have an additional ‘evolutionary advantage’ as compared to ~ - n .  

A further extension of these considerations is based on the fact that the A-T base pair 
has only two H-bonds, as the complement of thymine (or uracil) is adenine and not a 
diaminopurine, as mentioned in by Piccirilli el al. [2] and Lowdin ([6a], pp.297-298). 
Thus, a NH, group seems to be ‘missing’ here. In this context, one usually points out that 
the A-T base pair is extensively used in higher organisms, because it can be opened ‘more 
easily’ during replication, which might also represent a specific evolutionary advantage. 
In the light of the present quantum mechanical investigations, however, one immediately 
recognizes that an additional NH, group on adenine (to create a diaminopurine having a 
triple H-bond with thymine) would result to the same symmetric H-bond pattern as in IC-n 
(cf. Fig. I ) ,  thus creating a base pair without the quantum-correlation stability being 
characteristic for G-C. In this sense, one could speculate that Nature has ‘removed a NH, 
group from A-T, and not from G-C, not just by accident’. 

It would be interesting to extend the preceding investigations by considering possible 
quantum correlations between protons (or H-atoms) belonging to adjacent base pairs 
along the DNA helical axis. If namely the aforementioned quantum-correlation stability 
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(or: rigidity, stiffness) does really cause some kind of evolutionary advantage (or disad- 
vantage), then one would expect that Nature may make already some 'use' of it. But then 
this ought to be manifested in specific features (or patterns) of DNA nucleotide sequences 
of living organsims. Further work along these lines is in progress. 

I am indebted to E. Brundas and P.-0. L6wdin (Uppsala University) and P. J. Nielsen (Max-Planck-Institut 
fur Immunbiologie, Freiburg) for invaluable discussions. 1 thank S. Kullander (dean of the faculty of mathematical 
and natural sciences) and E. Brandas (chairman of the department of quantum chemistry) for a guest professorship 
at Uppsala University, where the main part of this work was done. This work was supported, in part, by the 
Commission of the European Communities (SCIENCE plan) and the Fonds der Chemischen Industrie (Frankfurt). 

Appendix.  some additional remarks on eigenvectors and eigenvalues of Jordan blocks may be helpful here. As 
mentioned previously, there exist special cases where the qflictiue (or: relevant, reduced) Hamiltonian matrix H 
exhibits a Jordan block structure, i.e. it is similar to the matrix 

It holds that no similarity (i.e. arbitrary nonsingular) transformation is able to diagonalize J ( E ) ,  cJ [27]. Further- 
more, every Jordan block, like J ( E ) ,  has only one eigenvector. 

Due to the revealed physical importance of Jordan blocks in the presently considered proton transfer processes 
and, more generally, in the framework of dynamics in condensed matter [5] ,  let us outline here the proof of the last 
statement. Let J ( E )  be the above Hamiltonian in the corresponding representation. The time-independent 
Schrlidinger equation reads then 

Matrix multiplication on the left-hand side leads explicitly to the linear system of equations: 

E . c ,  + c2 = I , c l  

0 + E 'c2 = A. 'c2 

(A.3a) 

(A.3b) 

Eqn. A.3h gives 
I = E  (A.4b) 

and putting this result into Eqn. A.Sa, we obtain 

E.cl+c2=E.cl  (A.4a) 

But this equation implies necessarily that it must hold 

c2 = 0 (A.5) 

Thus, we conclude that all eigenfunctions (or: eigenvectors) of a Hamiltonian matrix of the type J ( E )  associated 
with the eigenvalue Eqn.A.2 have the form 

u: = c1 ,(i) (el: arbitrary complex number) 

In other words, all eigenfunctions of the Hamiltonian constitute a one-dimensional subspace (or: ray) of the 
two-dimensional space being in general spanned by the eigenfunctions of a 2 x 2 matrix. This restriction represents 
the aforementioned increased phase rigidity of the quantum mechanical state of the system. 

(A.6) 

Note Added in Proof. - Recent investigations showed that the main results (6)  and (7) can be proved also 
under more general conditions, i.e. without using the restrictive condition R, = R2 = R of Sect. 7. 
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